

天津市地方计量技术规范

JJF(津)XX-2025

便携式 I-V 曲线测试仪 校准规范

Calibration Specification for Portable I-V Curve Test Device (报批稿)

2025-XX-XX 发布

2025-XX-XX 实施

便携式 I-V 曲线测试仪 校准规范

JJF(津) XX-2025

Calibration Specification for

Portable I-V Curve Test Device

归 口单位: 天津市市场监督管理委员会

主要起草单位: 天津市计量监督检测科学研究院

本规范主要起草人:

翟家强 (天津市计量监督检测科学研究院)

柳云秀 (天津市计量监督检测科学研究院)

杨学毫 (天津市计量监督检测科学研究院)

参加起草人:

冯 宇 (天津市计量监督检测科学研究院)

杨雪辰 (天津市计量监督检测科学研究院)

周 超 (天津市计量监督检测科学研究院)

目 录

引	言	(II)	>
1	范围	(1	`,
2	引用文件	(1	`,
3	术语和计量单位	(1	`,
4	概述	(2	` '
5		(2	` '
6	校准条件	(2	\
7	校准项目和校准方法	(3	` '
8	校准结果	(5	\
9	复校时间间隔	(5	` '
	* A		
附录	* B	(8	` '
附录	* C	(10	`

引 言

本规范依据国家计量技术规范 JJF 1071《国家计量校准规范编写规则》和 JJF 1059.1 《测量不确定度评定与表示》基础性系列规范进行编写。参考了 SJ/T 11061《太阳电池电性能测试设备检验方法》、IEC 60904-1《光伏器件 第1部分:光伏电流-电压特性的测量》、IEC 61215-2《地面用光伏组件 设计鉴定和定型 第2部分:测试程序》的部分内容。

本规范为首次发布。

便携式 I-V 曲线测试仪校准规范

1 范围

本规范适用于短路电流(0.1~30)A、开路电压(5~1500)V、用于光伏组件电参数测量的便携式 I-V 曲线测试仪的校准。本规范包括短路电流、开路电压、最大功率等关键参数的计量特性、校准方法、校准结果表述等内容。

2 引用文件

本规范引用了下列文件:

IEC 60904-9 光伏器件 第 9 部分: 太阳模拟器性能分级(Photovoltaic devices – Part 9: Classification of solar simulator characteristics)

凡是注日期的引用文件,仅注日期的版本适用本规范;凡是不注日期的引用文件,其 最新版本(包括所有的修改单)适用于本规范。

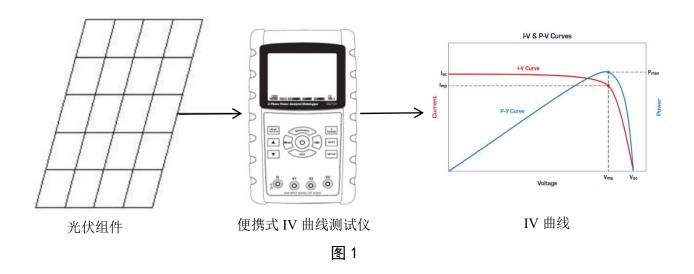
3 术语和计量单位

3.1 短路电流 (I_{sc}) short-circuit current

在一定的温度和辐照度条件下,光伏器件在端电压为零(短路)时的输出电流,单位为安(A)。

3.2 开路电压 (V_{oc}) open-circuit voltage

在一定的温度和辐照度条件下,光伏器件在空载(开路)时的输出电压,单位为伏(V)。


3.3 最大功率 (P_{max}) maximum power

在一定的温度和辐照度条件下,光伏器件在负载电路由短路状态至开路状态逐渐变 化过程中,输出功率的最大值,单位为瓦(W)。

4 概述

便携式 I-V 曲线测试仪通常用于户外光伏组件短路电流、开路电压、最大功率的测量。通过模拟负载电路在短路状态与开路状态之间的变化,测量光伏组件在不同负载条件下输出电压电流特性,并根据所测数据进行数据分析,得出被校准光伏组件的电压电流特性曲线以及开路电压、短路电流、最大功率等参数。本校准方法采用比对方法,通过标准 I-V

曲线测试仪与被校便携式 I-V 曲线测试仪测量同一光伏组件的短路电流、开路电压和最大功率,比对测量结果。

5 计量特性

5.1 短路电流修正系数

测量范围: 0.1A~30A, 最大允许误差±3.0%;

5.2 开路电压

测量范围: 5V~1500V, 最大允许误差±3.0%;

5.3 最大功率

测量范围: 5W~45000W, 最大允许误差±6.0%;

注: 具体计量特性, 可参照被校测试系统的技术要求。以上要求不适用于合格性判别, 仅供参考。

6 校准条件

6.1 环境条件

环境温度: (22±5) ℃; 环境湿度: ≤80%RH;

电源电压: 220V±22V; 电源频率: 50Hz±0.5Hz;

周围无影响校准工作的机械振动和电磁干扰,并具有良好的接地;无腐蚀性及易燃、 易爆气体。

6.2 主要测量标准及配套设备

根据所采用的校准方法,选择可以满足以下校准要求的测量设备。

6.2.1 标准 I-V 曲线测试仪:

电流范围 0.1A~30A, 最大允许误差±1.0%。

电压范围 5V~1500V, 最大允许误差±1.0%。

功率范围 1W~45000W, 最大允许误差±2.0%。

6.2.2 太阳模拟器:

太阳模拟器光源的光谱匹配度、辐照度不均匀度和辐照度不稳定度均需符合 IEC60904-9: 2020 中所规定的 BBA 等级要求。

7 校准项目和校准方法

7.1 校准项目

校准项目包括短路电流、开路电压、最大功率。

7.2 校准方法

7.2.1 校准前检查

记录被测仪器的名称、规格型号、生产厂商、出厂编号等。确认被校仪器量程,调整被校仪器至正常工作状态。

7.2.2 曲线参数校准

将性能完好的光伏组件安装在 BBA 级稳态太阳模拟器的有效辐照面,同时连接标准 I-V 曲线测试仪和被测 I-V 曲线测试仪至光伏组件。打开光源照射被测组件 0.5h 使组件达到热稳定。

在相同辐照度和温度条件下,使用标准 I-V 曲线测试仪和被测 I-V 曲线测试仪交替对被照射组件进行 I-V 曲线测试, 重复三次,记录标准 I-V 曲线测试仪和被测 I-V 曲线测试仪的未修正的原始数据。

将标准 I-V 曲线测试仪三次测量的短路电流 I_{sc} 与开路电压 V_{oc} 分别记为 I_1 、 I_2 、 I_3 与 V_1 、 V_2 、 V_3 。根据三次测量结果按照式(1)进行稳定度计算(开路电压同理),要求短路电流稳定度<1.0%,开路电压稳定度<1.0%,若不符合要求则需重新测量,若符合要求则视为本组测量数据有效,根据测量结果进行计算,短路电流示值误差 I_3 按照公式(2)计算,开

路电压示值误差 1/2按照公式(3)计算,最大功率示值误差 1/2按照公式(4)计算。

$$\delta = \frac{l_{max} - l_{min}}{l_{average}} \times 100\% \tag{1}$$

式中:

 δ ——被照射组件输出状态稳定度;

 I_{max} ——三次测量结果 I_1 、 I_2 、 I_3 中的最大值;

 I_{\min} —三次测量结果 I_1 、 I_2 、 I_3 中的最小值;

 $I_{average}$ ——三次测量结果 I_1 、 I_2 、 I_3 的平均值;

$$I_{\mathbf{x}} = I_{\mathbf{i}} - I_{\mathbf{s}} \tag{2}$$

式中:

 I_x ——短路电流示值误差,A;

 I_{-} 被测 I-V 曲线测试仪的短路电流,A;

Is——标准 I-V 曲线测试仪的短路电流, A。

$$V_{\rm x} = V_{\rm i} - V_{\rm s} \tag{3}$$

式中:

¼——开路电压示值误差, V;

V——被测 I-V 曲线测试仪的开路电压, V;

⅓——标准 I-V 曲线测试仪的开路电压, V。

$$P_{\mathbf{X}} = P_{\mathbf{i}} - P_{\mathbf{s}} \tag{4}$$

式中:

 P_x ——最大功率示值误差,W;

 P_{-} —被测 I-V 曲线测试仪的最大功率,W:

 P_{s} ——标准 I-V 曲线测试仪的最大功率,W。

8 校准结果

校准结果应在校准证书上反映,校准证书应至少包含以下信息:

- a) 标题: "校准证书";
- b) 实验室名称和地址;

- c)进行校准的地点(如果与实验室的地址不同);
- d)证书的唯一性标识(如编号),每页及总页数的标识;
- e) 客户的地址和名称:
- f)被校对象的描述和明确标识;
- g)进行校准的日期,如果与校准结果的有效性和应用有关时,应说明被校对象的接收日期;
 - h) 如果与校准结果的有效性应用相关时,应对被样品的抽样程序进行说明;
 - i) 校准所依据的技术规范的标识,包括名称及代号;
 - i) 本次校准所用测量标准的溯源性及有效性说明;
 - k) 校准环境的描述:
 - 1)校准结果及其测量不确定度的说明;
 - m)对校准规范的偏离的说明;
 - n) 校准证书或校准报告签发人的签名、职务或等效标识;
 - o) 校准结果仅对被校对象有效的声明;
 - p) 未经实验室书面批准, 不得部分复制证书的声明。

9 复校时间间隔

建议复校时间间隔为 1 年。由于复校时间间隔的长短是由仪器的使用情况、使用者、仪器本身质量问题等诸因素所决定的,因此,送校单位可根据实际使用情况自主决定复校时间间隔。

附录 A

原始记录参考格式

证书编号:			原始记录编号:				
客户名称:			客户地址:				
仪器名称:			型号规格:				
制造厂:			出厂编号:	出厂编号:			
校准地点:							
校准依据:							
环境条件:温度	蹇:	相对湿度:	校准日期:				
校准员:			核验员:				
标准器名称 编号 不确定度或准确度等级 或最大允许误差		证书编号	证书有效期	溯源机构名称			

一、测量数据

利用标准 I-V 曲线测试仪和被测 I-V 曲线测试仪,采用比较法,交替测量同一光伏组件在相同辐照度和温度条件的 I-V 特性曲线。

其中标准 I-V 曲线测试仪对被照射光伏组件进行的三次测试数据如下:

测量次数	短路电流 I _{sc} (A)	开路电压 V _{oc} (V)
1		
2		
3		
稳定度 δ		

标准 I-V 曲线测试仪和被测 I-V 曲线测试仪测试数据如下: 短路电流 I_{sc} (A) 测量次数 被测仪器示值 标准仪器示值 示值误差 1 2 3 平均值 开路电压 V_{oc} (V) 被测仪器示值 测量次数 标准仪器示值 示值误差 1 2 3 平均值 最大功率 P_{max} (W) 测量次数 被测仪器示值 标准仪器示值 示值误差 1 2 3 平均值

二、不确定度描述:

校准结果的测量不确定度:

短路电流 I_{sc} : U_{rel} = (k=2);

开路电压 V_{oc} : U_{rel} = (k=2);

最大功率 P_{max} : U_{rel} = (k=2);

附录 B

校准证书内页推荐格式

证书编号: XXXXXX-XXXX

校准机构授权说明									
校准所	校准所依据的技术文件(代号、名称):								
校准所	使用的主	要计量器具:							
名称	本								
校准地点及其环境条件:									
地点:									
温度:	温度: 其他:								

第×页共×页

证书编号: XXXXXX-XXXX

校准结果

一、校准结果:

利用标准 I-V 曲线测试仪和被测 I-V 曲线测试仪,采用比较法,测量同一光伏组件 在相同辐照度和温度条件的 I-V 特性曲线,测试数据如下:

	短路电流 Isc/A	开路电压 Voc/V	最大功率 P _{max} /W
被测值			
标准值			
示值误差			

二、不确定度描述:

校准结果的测量不确定度:

短路电流 I_{sc} : U_{rel} = (k=2);

开路电压 V_{oc} : U_{rel} = (k=2);

最大功率 P_{max} : U_{rel} = (k=2);

第 \times 页 共 \times 页

附录 C

校准结果不确定度评定示例

C.1 短路电流校准不确定度的评定

C.1.1 测量方法

使用标准 I-V 曲线测试仪和被测 I-V 曲线测试仪在同等测试条件下测量同一光伏组件的电流电压特性,分别记录标准 I-V 曲线测试仪和被测 I-V 曲线测试仪的短路电流值,计算短路电流的示值误差。

C.1.2 不确定度来源

- (1) I-V 曲线测试仪短路电流修正系数测量重复性引入的不确定度分量 u_{Irel} ;
- (2) 标准 I-V 曲线测试仪短路电流溯源证书引入的不确定度分量 u_{2rel} ;
- (3) 太阳模拟器辐照度不稳定度引入的不确定度分量 u3rel;

C.1.3 测量重复性引入的不确定度分量 u_{1rel}

对 I-V 曲线测试仪短路电流修正系数进行重复测量,测试数据如下:

测量次数	1	2	3	4	5	6
标准 I-V 曲线测试仪测量值(A)	13.2865	13.3432	13.3048	13.3175	13.3274	13.3553
被测 I-V 曲线测试仪测量值(A)	13.2233	13.2948	13.2452	13.2785	13.3080	13.3315
示值误差(A)	-0.0632	-0.0484	-0.0596	-0.039	-0.0194	-0.0238

采用贝塞尔公式计算标准偏差, S=0.01817A,校准取 3 次测量的平均值作为最终结果,故由重复性引入的不确定度为: $u_1 = \frac{s}{\sqrt{n}} \approx 0.0105 \text{A}$, $u_{1\text{re}} = \frac{0.0105}{13.3225} = 0.0787\% \approx 0.08\%$ 。

C.1.4 标准 I-V 曲线测试仪校准引入不确定度 u_{2rel}

根据溯源证书查得标准 I-V 曲线测试仪短路电流校准不确定度为: 0.7%(k=2),故由此引入的不确定度为: $u_{2rel}=0.35\%$ 。

C.1.5 太阳模拟器辐照度不稳定度引入不确定度 u3rel

光伏组件的短路电流 I_{sc} 与模拟器照射光源的辐照度近似线性相关,辐照度波动将直接

影响组件短路电流输出值。实验中将组件短路电流稳定度限定为 1.0%内,超出限定值则视为本组测试数据无效,故由辐照度引入的不确定度分量为: *u*_{3rel}=1.0%

C.1.6 合成标准不确定度的评定

主要标准不确定度汇总表如下表所示

标准不确定度一览表

标准不确定度分量	不确定度来源	标准不确定度值
$u_{1 m rel}$	测量重复性	0.08%
$u_{2\mathrm{rel}}$	标准器校准	0.35%
$u_{3\mathrm{rel}}$	太阳模拟器辐照度不稳定度	1.0%

短路电流校准标准不确定度为:

$$u_{\text{rel}}(I_{\text{sc}}) = \sqrt{u_{1\text{rel}}^2 + u_{2\text{rel}}^2 + u_{3\text{rel}}^2} = 1.063\% \approx 1.1\%$$

C.1.7 扩展不确定度的评定

对应 p 约为 95%包含概率, 取 k=2,则扩展不确定度为:

$$U_{\text{rel}}(I_{\text{sc}})=2.2\%, k=2.$$

C.2 开路电压校准不确定度的评定

C.2.1 测量方法

使用标准 I-V 曲线测试仪和被测 I-V 曲线测试仪在同等测试条件下测量同一光伏组件的电流电压特性,分别记录标准 I-V 曲线测试仪和被测 I-V 曲线测试仪的开路电压值,计算开路电压的修正系数。

C.2.2 不确定度来源

- (1) I-V 曲线测试仪开路电压修正系数测量重复性引入的不确定度分量 u_{lrel} ;
- (2) 标准 I-V 曲线测试仪开路电压溯源证书引入的不确定度分量 u_{2rel} ;
- (3)被测量组件温度不稳定度引入的不确定度分量 usrel;

C.2.3 测量重复性引入的不确定度分量 u_{Irel}

对 I-V 曲线测试仪开路电压修正系数进行重复测量,测试数据如下:

测量次数	1	2	3	4	5	6
标准 I-V 曲线测试仪测量值(V)	55.7089	55.8735	55.7673	55.7190	55.6785	55.8660
被测 I-V 曲线测试仪测量值(V)	55.7343	55.8443	55.7187	55.7009	55.6488	55.8148
示值误差 (V)	0.0254	-0.0292	-0.0486	-0.0181	-0.0297	-0.0512

采用贝塞尔公式计算标准偏差, S=0.02782V,校准取 3 次测量的平均值作为最终结果,故由重复性引入的不确定度为: $u_1 = \frac{s}{\sqrt{n}} \approx 0.0161$ V, $u_{1rel} = \frac{0.0161}{55.7689} = 0.0288\% \approx 0.03\%$ 。 C.2.4 标准 I-V 曲线测试仪校准引入不确定度 u_{2rel}

根据溯源证书查得标准 I-V 曲线测试仪开路电压校准不确定度为: 0.5%(k=2),故由此引入的不确定度为: $u_{2rel}=0.25\%$ 。

C.2.5 被测量组件温度不稳定度引入不确定度 u3rel

光伏组件的开路电压 V_{oc} 与组件温度相关,温度波动将直接影响组件开路电压输出值。 实验中将组件开路电压稳定度限定为 1.0%内,超出限定值则视为本组测试数据无效,故由 温度引入的不确定度分量为: $u_{3rel}=1.0\%$

C.2.6 合成标准不确定度的评定

主要标准不确定度汇总表如下表所示

标准不确定度一览表

标准不确定度分量	准不确定度分量 不确定度来源	
$u_{1\mathrm{rel}}$	测量重复性	0.03%
u _{2rel}	标准器校准	0.25%
<i>u</i> 3rel	组件温度不稳定度	1.0%

开路电压校准标准不确定度为:

$$u_{\text{rel}}(V_{\text{oc}}) = \sqrt{u_{1\text{rel}}^2 + u_{2\text{rel}}^2 + u_{3\text{rel}}^2} = 1.04\% \approx 1.1\%$$

C.2.7 扩展不确定度的评定

对应 p 约为 95%包含概率, 取 k=2,则扩展不确定度为:

 $U_{\rm rel}(V_{\rm oc})=2.2\%, k=2.$

C.3 最大功率校准不确定度的评定

C.3.1 测量方法

使用标准 I-V 曲线测试仪和被测 I-V 曲线测试仪在同等测试条件下测量同一光伏组件的电流电压特性,分别记录标准 I-V 曲线测试仪和被测 I-V 曲线测试仪的最大功率值,计算最大功率的修正系数。

C.3.2 不确定度来源

- (1) I-V 曲线测试仪最大功率修正系数测量重复性引入的不确定度分量 u_{rel} ;
- (2) 标准 I-V 曲线测试仪最大功率溯源证书引入的不确定度分量 u_{2rel} ;
- (3) 太阳模拟器辐照度不稳定度引入的不确定度分量 u_{3rel} ;
- (4)被测量组件温度不稳定度引入的不确定度分量 u4rel;

C.3.3 测量重复性引入的不确定度分量 upel

对 I-V 曲线测试仪最大功率修正系数进行重复测量,测试数据如下:

测量次数	1	2	3	4	5	6
标准 I-V 曲线测试仪测量值(W)	584.6865	597.1405	599.0534	583.0625	590.1609	596.1273
被测 I-V 曲线测试仪测量值(W)	586.0794	587.4454	588.9829	585.1169	588.4795	585.0328
修正系数	0.9976	1.0165	1.0171	0.9965	1.0029	1.019

采用贝塞尔公式计算标准偏差,S=6.1058W, 校准取 3 次测量的平均值作为最终结果,故由重复性引入的不确定度为: $u_1 = \frac{s}{\sqrt{n}} \approx 3.525$ W, $u_{1rel} = \frac{3.525}{591.7052} = 0.5958\% \approx 0.60\%$ 。

C.3.4 标准 I-V 曲线测试仪校准引入不确定度 u2rel

根据溯源证书查得标准 I-V 曲线测试仪最大功率校准不确定度为: 0.8%(k=2),故由此引入的不确定度为: $u_{2rel}=0.4\%$ 。

C.3.5 太阳模拟器辐照度不稳定度引入不确定度 u3rel

光伏组件的最大功率 P_{max} 受短路电流 I_{sc} 与开路电压 V_{oc} 影响,而短路电流 I_{sc} 与模拟器照射光源的辐照度近似线性相关,辐照度波动将直接影响组件短路电流输出值。实验中

将组件短路电流稳定度限定为 1.0%内,超出限定值则视为本组测试数据无效,故由辐照度引入的不确定度分量为: $u_{3rel}=1.0\%$

C.3.6 被测量组件温度不稳定度引入不确定度 u4rel

光伏组件的最大功率 P_{max} 受短路电流 I_{sc} 与开路电压 V_{oc} 影响,而开路电压 V_{oc} 与组件温度相关,温度波动将直接影响组件开路电压输出值。实验中将组件开路电压稳定度限定为 1.0%内,超出限定值则视为本组测试数据无效,故由温度引入的不确定度分量为: $u_{\text{4rel}}=1.0\%$

C.3.7 合成标准不确定度的评定

主要标准不确定度汇总表如下表所示

 标准不确定度分量
 不确定度来源
 标准不确定度值

 u_{1rel} 测量重复性
 0.60%

 u_{2rel} 标准器校准
 0.4%

 u_{3rel} 太阳模拟器辐照度不稳定度
 1.0%

 u_{4rel} 组件温度不稳定度
 1.0%

标准不确定度一览表

最大功率校准标准不确定度为:

$$u_{\text{rel}}(I_{\text{sc}}) = \sqrt{u_{1\text{rel}}^2 + u_{2\text{rel}}^2 + u_{3\text{rel}}^2 + u_{4\text{rel}}^2} = 1.59\% \approx 1.6\%$$

C.3.8 扩展不确定度的评定

对应 p 约为 95%包含概率, 取 k=2,则扩展不确定度为:

$$U_{\text{rel}}=3.2\%$$
, $k=2$.

14