

天津市地方计量技术规范

JJF(津)XX-2025

点型激光甲烷检测报警器 校准规范

Calibration Specification for Point Type Laser Methane
Detectors and Alarms

(报批稿)

2025-XX-XX 发布

2025-XX-XX 实施

点型激光甲烷检测 报警器校准规范

JJF(津) XX-2025

Calibration Specification for Point Type Laser Methane Detectors and Alarms

归口单位:天津市市场监督管理委员会

主要起草单位: 天津市计量监督检测科学研究院

天津市武清区计量检定所

参加起草单位:中海油能源发展股份有限公司安全环保分公司

交通运输部天津水运工程科学研究所

本规范主要起草人:

付 迪 (天津市计量监督检测科学研究院)

程 鹏(天津市计量监督检测科学研究院)

胡顺杰 (天津市武清区计量检定所)

参加起草人:

葛伟凤(中海油能源发展股份有限公司安全环保分公司)

杨佳董美(交通运输部天津水运工程科学研究所)

徐 超(天津市武清区计量检定所)

白玉洁 (天津市计量监督检测科学研究院)

目 录

引	言		(I
1	范围		(1)
2	概述	<u></u>	(1)
3	计量	性性	(1)
4	校准	条件	(2)
4.1	环	境条件	(2)
4.2	校	准用标准物质及配套设备	(2)
5	校准	项目和校准方法	(2)
5.1	校	准前检查	(2)
5.2	示	值误差	(2)
5.3	重	复性	(3)
5.4	响	应时间	(4)
5.5	漂	移	(4)
6	校准	结果表达	(4)
7	复校	时间间隔	(5)
附表	录 A	点型激光甲烷气体检测报警器校准记录(推荐)	(6)
附表	录 B	点型激光甲烷气体检测报警器校准证书内页格式(推荐)	(8)
附表	录 C	示值误差的测量不确定度评定示例(10)

引 言

JJF 1001—2011《通用计量术语及定义》、JJF 1059.1—2012《测量不确定度评定与表示》、JJF 1071—2010《国家计量校准规范编写规则》共同构成支撑本规范制定工作的基础性系列规范。

本规范的校准项目和校准方法主要参考了 GB 12358—2024《作业场所环境气体检测报警仪器 通用技术要求》及 GB/T 50493—2019《石油化工可燃气体和有毒气体检测报警设计标准》等技术标准。

本规范为首次发布。

点型激光甲烷检测报警器校准规范

1 范围

本规范适用于非矿井作业环境,测量范围为($0\sim100$)%LEL 的点型激光甲烷检测报警器的校准。

2 概述

点型激光甲烷检测报警器(以下简称报警器)主要用于检测作业场所等环境中甲烷气体的浓度。报警器的检测原理是激光光谱吸收原理, 当显示值大于报警设定值时, 具有声、光或振动报警。报警器主要由激光探头、信号处理单元、报警单元、显示单元等部分组成。报警器类型按使用方式分为固定式和便携式, 按采样方式分为扩散式和吸入式。

3 计量特性

- 3.1 示值误差 ±3%LEL。
- 3.2 重复性 不大于 2%。
- 3.3 响应时间 不大于 15s。
- 3.4 零点漂移 ±1%FS。
- 3.5 量程漂移 ±2%FS。

注:以上指标不适用于合格性判定,仅作参考。

4 校准条件

- 4.1 环境条件
- 4.1.1 环境温度: (0~40) ℃。
- 4.1.2 相对湿度: ≤85%。
- 4.1.3 无影响报警器正常工作的电磁场及干扰气体,应保持通风并采取安全措施。
- 4.2 校准用标准物质及配套设备
- 4.2.1 经国家计量行政部门批准的有证气体标准物质: 氮气中或空气中甲烷气体标准物质, 相对扩展不确定度不大于 2% (*k*=2)。当采用气体稀释装置时,稀释后气体标准物质浓度的相对扩展不确定度应满足上述要求。
- 4.2.2 零点气体: 洁净空气或纯度不低于99.999%的高纯氮气。
- 4.2.3 秒表: 最大允许误差不超过±0.10s/h。。
- 4.2.4 流量控制器:流量范围 $(0\sim1500)$ mL/min 或按照报警器说明书要求,准确度等级不低于 4 级。
- 4.2.5 减压阀及气体管路:减压阀、管路材质应不与甲烷气体发生反应或吸附。

5 校准项目和校准方法

- 5.1 校准前检查
- 5.1.1 外观检查

报警器不应有影响校准结果的缺陷,各按键应能正常使用,名称、型号、制造厂名称、编号等应清晰、完整。

5.1.2 通电检查

报警器通电后,应能正常工作,显示部分应清晰、完整。

5.1.3 报警功能和报警动作值检查

通入浓度约为报警设定值 1.5 倍的气体标准物质,当示值超过报警设定值时,观察报警器声、光或振动报警功能是否正常,并记录报警器报警时的示值。

5.2 示值误差

报警器预热完成后,按图1所示连接气体标准物质、流量控制器和被校报警器。校准 吸入式报警器时,应保证旁通流量计有气体放出。校准扩散式报警器时,应按照报警器说 明书的要求调节流量,若报警器说明书中没有明确要求,则流量一般控制在(500±50) mL/min。按照报警器使用说明书的要求调整报警器的零点和示值。若说明书中没有明确要求,则用零点气体调整报警器的零点,用浓度约为 40%LEL 的气体标准物质调整报警器的示值。

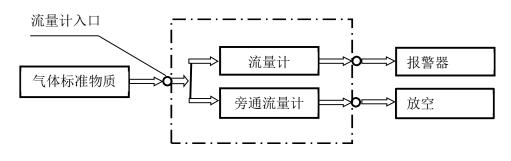


图 1 报警器校准示意图

分别通入浓度约为 10%LEL、40%LEL、60%LEL 的气体标准物质, 待示值稳定后记录 示值, 每种浓度重复测量 3 次, 取算术平均值作为报警器示值。按式(1)计算示值误差。

$$\Delta c = \overline{c} - c_{s} \tag{1}$$

式中:

 Δc ——报警器示值误差,%LEL;

 \bar{c} ——3 次测量结果的算术平均值,%LEL:

 c_{c} ——气体标准物质浓度值,%LEL。

5.3 重复性

通入浓度约为 40%LEL 的气体标准物质,重复测量 6次,重复性以单次测量的相对标准偏差表示,按式(2)计算报警器的重复性。

$$s_{\rm r} = \frac{1}{c} \times \sqrt{\frac{\sum_{i=1}^{n} (c_i - \overline{c})^2}{n-1}} \times 100\%$$
 (2)

式中:

s. ——测量重复性;

c——测量结果的算术平均值,%LEL;

 c_i ——第 i 次测量值,%LEL;

n——测量次数,n=6。

5.4 响应时间

通入零点气体使报警器示值回零,通入浓度约为 40%LEL 的气体标准物质,待示值稳定后读取报警器示值。撤去气体标准物质,报警器示值回零后,再通入上述浓度的气体标准物质,同时启动秒表,待报警器示值达到稳定示值的 90%时停止计时,记录秒表读数,重复测量 3 次,取 3 次秒表读数的算术平均值作为报警器的响应时间。

5.5 漂移

报警器的漂移包括零点漂移和量程漂移。

通入零点气体使报警器示值回零,读取稳定示值 C_{z0} ,再通入浓度约为 60%LEL 的气体标准物质,读取稳定示值 C_{s0} 。对于便携式报警器,连续运行 1h,每间隔 15min 通入零点气体读取稳定示值 C_{zi} ,再通入浓度约为 60%LEL 的气体标准物质,读取稳定示值 C_{si} ;对于固定式报警器,连续运行 4 h,每间隔 1 h 重复上述步骤 1 次。按式(3)计算零点漂移,取绝对值最大的 ΔZ_i 作为报警器的零点漂移;按式(4)计算量程漂移,取绝对值最大的 ΔS_i 作为报警器的量程漂移。

$$\Delta Z_i = \frac{C_{zi} - C_{z0}}{R} \times 100\% \tag{3}$$

$$\Delta S_i = \frac{(C_{si} - C_{zi}) - (C_{s0} - C_{z0})}{R} \times 100\%$$
(4)

式中:

R——报警器满量程,%LEL。

6 校准结果表达

校准结果应反映在校准证书上,校准证书应至少包括以下信息:

- a) 标题,如"校准证书";
- b) 实验室名称和地址;
- c) 进行校准的地点(如果与实验室的地址不同);
- d) 证书的唯一性标识(如编号),每页及总页数的标识;
- e) 客户的名称和地址:
- f)被校对象的描述和明确标识;
- g) 进行校准的日期,如果与校准结果的有效性和应用有关时,应说明被校对象的

接收日期;

- h) 如果与校准结果的有效性和应用有关时,应对被校样品的抽样程序进行说明;
- i) 校准所依据的技术规范的标识,包括名称及代号;
- i) 本次校准所用测量标准的溯源性及有效性说明;
- k) 校准环境的描述;
- 1) 校准结果及测量不确定度的说明;
- m) 对校准规范的偏离的说明:
- n) 校准证书签发人的签名、职务或等效标识;
- o) 校准结果仅对被校对象有效的声明;
- p) 未经实验室书面批准, 不得部分复制证书的声明。

7 复校时间间隔

复校时间间隔的长短由报警器的使用情况、使用者、报警器本身质量等诸因素所决定,送校单位可根据使用情况自主决定复校时间间隔,建议不超过1年。如果对报警器的测量数据有怀疑,或报警器更换主要部件及维修后,应重新校准。

附录 A

点型激光甲烷检测报警器校准原始记录格式

- L V A	单位名称		10 46 00 1) 6	报警器名称	
委托单位	单位地址		报警器信息	报警器型号	
	联系人			出厂编号	
	联系电话			生产厂家	
校准地点			环境温度		
校准日期			相对湿度		
证书编号			原始记录编号		
校准依据	-	·	校准人员	核验	:人员

本次使用的主要 计量标准器具	规格型号	不确定度/准确度等级/ 最大允许误差	器具编号	器具有效期

Λ -1	121/2-	14.11	ノー
A. 1	校准	盯桥	ず台

外观检查:□符合要求	□不符合要求	通电检查:□符合要求	□不符合要求
报警功能检查:□正常	□不正常	报警动作值:	%LEL

A. 2 示值误差

气体标准物质	报警	器测量值(%I	LEL)	平均值	示值误差 (%LEL)	扩展不确定 度
浓度值 (%LEL)	1	2	3	(%LEL)		

A.3 重复性

气体标准物 质浓度值		报	警器测量值	直(%LEI			平均值 (%LEL)	重复性
(%LEL)	1	2	3	4	5	6		

A.4 响应时间

气体标准物质浓度值	响应时间测量值(s)			响应时间
(%LEL)	1	2	3	(s)

A.5 漂移

时间			
报警器零点值 (%LEL)			
报警器示值 (%LEL)			
零点漂移(%FS)			
量程漂移(%FS)			

附录 B

点型激光甲烷检测报警器校准证书内页格式 (推荐)

证书编号××××				
校准机构授权说明				
校准所依据的技术	文件(代号、名称)			
校准环境条件及地	点:			
温度	$^{\circ}$	地点		
相对湿度	9/0	其他		
校准使用的主要标	准器			
名称	测量范围	不确定度/准确度 等级/最大允许误 差	检定/校准证书编号	有效期至
	1			
		第×页共×页		

证书编号××××一××××

校准结果

1. 示值误差:

气体标准物质浓度值/ (%LEL)	测量值/ (%LEL)	示值误差/ (%LEL)	扩展不确定度

2.	重复性:	

- 3. 响应时间: _____
- 4. 零点漂移: ______
- 5. 量程漂移: ______

以下空白

第×页 共×页

附录 C

示值误差的测量不确定度评定示例

C.1 校准方法

校准方法:校准方法见本规范 5.2。测量标准为空气中甲烷气体标准物质,相对扩展不确定度为 2% (k=2)。

C.2 测量模型

$$\Delta c = c - c_s \tag{C.1}$$

式中:

 Δc ——示值误差,%LEL;

c——3 次测量结果的算术平均值,%LEL;

 $c_{\rm s}$ ——气体标准物质浓度值,%LEL。

合成标准不确定度的计算公式为:
$$u_c(\Delta c) = \sqrt{c_1^2 u^2(c) + c_2^2 u^2(c_s)}$$
 (C. 2)

式中,灵敏系数:
$$c_1 = \frac{\partial \Delta c}{\partial \overline{c}} = 1$$
 $c_2 = \frac{\partial \Delta c}{\partial c_s} = -1$

C.3 标准不确定度

C. 3. 1 输入量c的标准不确定度u(c)的评定

依据本规范的校准方法,在报警器正常工作的条件下,依次通入浓度为 10.2%LEL、 40.1%LEL、 60.2%LEL 的气体标准物质进行测量,重复测量 10 次,测量结果见表 C. 1。由式 (C. 3) 计算标准偏差,由式 (C. 4) 计算重复性引入的标准不确定度 $u(\bar{c})$,计算结果见表 C. 2。

表 C.1 测量结果

单位: %LEL

标准值	测量值									
10.2	11	11	12	11	10	11	11	10	11	11
40.1	38	40	39	39	40	39	39	39	39	38
60.2	61	62	61	61	61	61	61	62	61	61

$$s = \sqrt{\frac{\sum_{i=1}^{n} (c_i - \overline{c})^2}{n-1}}$$
 (C.3)

$$u(\bar{c}) = \frac{s}{\sqrt{3}} \tag{C.4}$$

式中:

s ——标准偏差,%LEL;

c——测量结果的算术平均值,%LEL;

 c_i ——第 i 次测量值,%LEL;

n——测量次数,n=10。

表 C.2 各校准点标准不确定度计算结果

标准值	平均值	标准偏差	不确定度
C _s / (%LEL)	- C/ (%LEL)	s/ (%LEL)	$u(\overline{c})/(\%\text{LEL})$
10.2	10.9	0.568	0.328
40.1	39.0	0.667	0.385
60.2	61.2	0.422	0.244

C.3.2 输入量 c_s 的标准不确定度 $u(c_s)$ 的评定

校准点 10.2 %LEL:
$$u(c_s) = \frac{10.2\%\text{LEL} \times 2\%}{2} = 0.102\%\text{LEL}$$

校准点 40.1%LEL:
$$u(c_s) = \frac{40.1\%\text{LEL} \times 2\%}{2} = 0.401\%\text{LEL}$$

校准点 60.2 %LEL:
$$u(c_s) = \frac{60.2\%\text{LEL} \times 2\%}{2} = 0.602\%\text{LEL}$$

C.4 合成标准不确定度

合成标准不确定度的计算公式: $u_c(\Delta c) = \sqrt{u^2(c) + u^2(c_s)}$

校准点 10.2 %LEL: $u_c(\Delta c) = 0.34$ %LEL

校准点 40.1%LEL: $u_c(\Delta c) = 0.56\%$ LEL

校准点 60.2 %LEL: $u_c(\Delta c) = 0.65$ %LEL

C.5 扩展不确定度

取包含因子 k=2,则各校准点扩展不确定度为:

校准点 10.2 %LEL: U = 0.7%LEL, k = 2

校准点 40.1%LEL: U = 1.2%LEL, k = 2

校准点 60.2%LEL: U = 1.3%LEL, k = 2