

天津市地方计量技术规范

JJF(津)3042-2025

水分接收器校准规范

Calibration Specification for Moisture Receivers

2025-09-29 发布

2025-11-01 实施

水分接收器校准规范

JJF(津) 3042-2025

Calibration Specification for Moisture Receivers

归口单位: 天津市流量容量计量技术委员会

主要起草单位: 天津市计量监督检测科学研究院

北京市计量检测科学研究院

河北省计量监督检测研究院

参加起草单位: 天津市东丽区计量检定所

天津市中西医结合医院(天津市南开医院)

本规范主要起草人:

施 鑫 (天津市计量监督检测科学研究院)

路 遥 (天津市计量监督检测科学研究院)

赵 强 (北京市计量检测科学研究院)

李玄晔 (河北省计量监督检测研究院)

参加起草人:

刘晓菲 (天津市东丽区计量检定所)

郭苓伊 (天津市中西医结合医院(天津市南开医院))

瞿 蒙 (北京市计量检测科学研究院)

于劲竹 (天津市计量监督检测科学研究院)

目 录

引	言	(]	Ⅱ)
1	范围	()	1)
2	引用文件······	()	1)
3	术语和计量单位	()	1)
3. 1	术语	()	1)
3. 2	计量单位 · · · · · · · · · · · · · · · · · · ·	()	1)
4	概述	()	1)
5	计量特性 · · · · · · · · · · · · · · · · · · ·	(:	2)
6	校准条件	(:	2)
6. 1	环境条件	(:	2)
6. 2	校准介质	(:	2)
6. 3	校准用设备	(:	2)
7	校准项目和校准方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	(;	3)
7. 1	校准前的准备	(;	3)
7. 2	2. 校准项目	(:	3)
7.3	8 校准方法	(:	3)
7.4		(4	4)
	校准结果的表达	(!	5)
9	复校时间间隔	((6)
附氢		('	7)
附氢		(8	8)
附氢	录C 水分接收器校准记录格式(仅供参考) ····································	(!	9)
附氢	录D 水分接收器校准证书内页格式(仅供参考)	(1	0)
附责	录E 水分接收器容量值测量结果的不确定度评定示例····································	(1	1)

引言

JJF 1001《通用计量术语及定义》、JJF 1071-2010《国家计量校准规范编写规则》、 JJF 1059.1《测量不确定度评定与表示》共同构成支撑本规范制定工作的基础性文件。

本规范在技术方面主要参考了 JJG 10-2005《专用玻璃量器》、GB/T 260《石油产品水含量的测定 蒸馏法》、GB/T 6682《分析实验室用水规格和试验方法》、GB/T 8929《原油水含量的测定 蒸馏法》、GB/T 12810 《实验室玻璃仪器 玻璃量器的容量校准和使用方法》。

本规范作为京津冀共建规范,为首次发布。

水分接收器校准规范

1 范围

本规范适用于水分接收器(也可称为水分测定仪)的校准。

2 引用文件

本规范引用了下列文件:

JJF 1009 容量计量术语及定义

JJG 99—2022 砝码

GB/T 260 石油产品水含量的测定 蒸馏法

GB/T 6682 分析实验室用水规格和试验方法

GB/T 8929 原油水含量的测定 蒸馏法

GB/T 12810 实验室玻璃仪器 玻璃量器的容量校准和使用方法

凡是注日期的引用文件,仅注日期的版本适用于本规范;凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本规范。

3 术语和计量单位

3.1 术语

3.1.1 水分接收器 moisture receiver

用蒸馏法测定原油水含量时,接收蒸馏出的冷凝水的仪器。

3.2 计量单位

计量单位:毫升 (mL)

4 概述

水分接收器是用蒸馏法测定原油水含量时,原油和水分离后,接收冷凝水的专用 仪器,如图 1,主要由刻度管和分离管两部分组成,属于量入式量器,一般由玻璃制 成。常见的类型有圆形水分接收器、精密锥形水分接收器和重油水分接收器。主要应 用于石油化工、材料研究等领域。

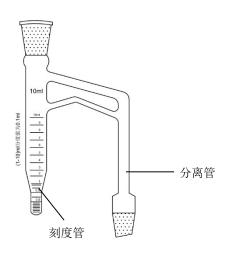


图 1 水分接收器示意图

常见的水分接收器示意图见附录A所示。

5 计量特性

水分接收器的实际容量值。

6 校准条件

- 6.1 环境条件
- 6.1.1 环境温度: 室温(20±5)°C,室温变化应不大于1°C/h;
- 6.1.2 相对湿度: 30%~80%。
- 6.2 校准介质

介质应符合 GB/T 6682《分析实验用水规格和试验方法》要求的纯水(蒸馏水或去离子水),并提前放入实验室内,使其温度与室温之差不得大于 2℃。

6.3 校准用设备

校准用设备的技术要求应符合表 2 中的要求,也可用扩展不确定度满足要求的其他测量标准。

类型	仪器名称	测量范围	技术要求	用途	备注
		(0~210) g	○ 级,实际分度值≤0.1mg	测量质量	/
主要	电子天平	(0~3100)g	Ⅲ级,实际分度值≤10mg		/
设备	玻璃液体	, · · · ·	实际分度值≤0.1℃,	测量校准	/
	温度计	(0~50)°C	扩展不确定度≤0.2℃(<i>k</i> =2)	介质温度	

表 1 主要设备及技术要求一览表

表 1 续) 主要设备及技术要求一览表

类型	仪器名称	测量范围	技术要求	用途	备注
配套	12-145 FT 4H	,	,	固定水分	/
设备	校准用架	/	/	接收器	

7 校准项目和校准方法

7.1 校准前的准备

采用目测的方法,检查水分接收器的外观。水分接收器应标记标称容量、计量单位等信息,无可见缺陷,所有计量部分管段应平整成型,且标记的刻度应清晰、均匀及不可擦除。

7.2 校准项目

水分接收器的实际容量值。

7.3 校准方法

7.3.1 实际容量值的校准

采用衡量法对水分接收器的实际容量值进行校准,一般选取总容量的 1/10、半容量和总容量三个校准点,也可根据客户要求选择校准点。校准方法及步骤如下:

- 7.3.1.1 将水分接收器清洗干净并经过干燥处理(应提前放置于实验室内进行恒温),待 电子天平稳定后置于电子天平上清零。
- 7.3.1.2 将纯水注至水分接收器,并调整弯月面下沿与测量刻度线上边缘的水平面相切,用电子天平称量此时的水分接收器的质量,记录数值 m,同时将玻璃液体温度计插入刻度管内,测量并记录此时纯水的温度 $t_{\rm w}$ 。
- 7.3.2 每个校准点重复测量三次,取三次测量结果的平均值作为该校准点的实际容量值。

注:水分接收器液面的读值方法:介质弯月面的最低点应与分度线上边缘的水平面相切,视线应与分度线在同一水平面上,为使弯月面的最低点的轮廓清晰的显现,可在水分接收器的背面衬一黑色纸带,黑色纸带的上缘放在弯月面的下缘 1mm 处如图 2。

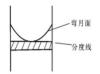


图 2 弯月面观察图

7.4 数据处理

7.4.1 实际容量值的计算

将 7.3.2 所测得的质量值、温度值分别带入式 (1) ,即可求得被测水分接收器在标准温度 20℃时的实际容量值。

$$V_{20} = \frac{m(\rho_{\rm B} - \rho_{\rm A})}{\rho_{\rm B}(\rho_{\rm W} - \rho_{\rm A})} \Big[1 + \beta (20 - t_{\rm W}) \Big]$$
 (1)

式中:

 V_{20} ——温度 20°C时的实际容量, mL:

m ——所注入水分接收器的蒸馏水表观质量, g;

 $\rho_{\rm B}$ ——砝码密度,取 8.00 g/cm³;

 $ho_{\rm A}$ ——校准时实验室内的空气密度,取 $0.0012~{
m g/cm}^3$;

 $\rho_{\rm w}$ ——蒸馏水在t℃时的密度, $g/{\rm cm}^3$;

β ——被校水分接收器的体胀系数,取 1×10⁻⁵/°C;

 $t_{\rm w}$ ——校准时介质水的温度,℃。

为简便计算过程,也可将式(1)化为式(2):

$$V_{20} = m \times K(t) \tag{2}$$

其中:
$$K(t) = \frac{(\rho_{\rm B} - \rho_{\rm A})}{\rho_{\rm B}(\rho_{\rm W} - \rho_{\rm A})} \left[1 + \beta(20 - t_{\rm W})\right]$$
(3)

K(t)值参见附录 B。根据测量值 m 和蒸馏水的温度所对应的 K(t)值,即可求出被校水分接收器在标准温度 20°C时的实际容量。

7.4.2 容量示值误差的计算

容量示值误差按式(4)进行计算:

$$\Delta V = V - \overline{V}_{20} \tag{4}$$

式中:

 ΔV ——测量点的容量示值误差,mL:

V ——测量点的容量标称值, mL:

 \overline{V}_{20} ——测量点在 20°C时实际容量值,mL

8 校准结果的表达

经校准的水分接收器出具校准证书,校准原始记录格式见附录 C,校准结果应在校准证书上反映(校准结果内容见附录 D),测量不确定度评定示例见附录 E。校准证书应至少包含以下信息:

- a) 标题"校准证书";
- b) 实验室名称和地址;
- c) 进行校准的地点(如果与实验室地址不同);
- d)证书的唯一性标识(如编号),每页及总页数的标识;
- e) 客户的名称和地址;
- f)被校对象的描述和明确标识;
- g)进行校准的日期,如果与校准结果的有效性和应用有关时,应说明被校对象的可接收日期:
 - h) 如果与校准结果的有效性应用有关时,应对被校样品的抽样程序进行说明;
 - i) 校准所依据的技术规范的标识,包括名称及代号;
 - i) 本次校准所用测量标准的溯源性及有效性说明;
 - k) 校准环境的描述;
 - 1)校准结果及其测量不确定度的说明;
 - m)对校准规范的偏离的说明:
 - n) 校准证书或校准报告签发人的签名、职务或等效标识:
 - o) 校准结果仅对被校对象有效的声明:

p) 未经实验室书面批准, 不得部分复制证书的声明。

9 复校时间间隔

由于复校时间间隔的长短是由仪器的使用情况、使用者、仪器本身质量等诸因素所决定的,因此,送校单位可根据实际使用情况自主决定复校时间间隔。

附录 A

各类型水分接收器示意图

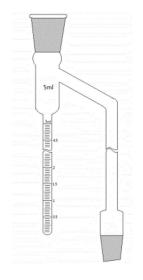


图 A.1 圆形水分接收器

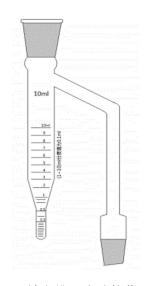


图 A.2 精密锥形水分接收器

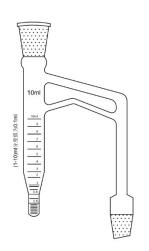


图 A.3 重油水分接收器

附录 B

K(t)值表

 $(\rho_{\rm A} = 0.0012 \,\mathrm{g} \,/\,\mathrm{cm}^3 \,\beta = 1 \times 10^{-5} \,/\,^{\circ}\mathrm{C})$

水温/°C	$K(t)/(cm^3/g)$	水温/℃	$K(t)/(cm^3/g)$	水温/℃	$K(t)/(cm^3/g)$
15.0	1.00200	18.4	1.00254	21.8	1.00322
15.1	1.00201	18.5	1.00256	21.9	1.00324
15.2	1.00203	18.6	1.00258	22.0	1.00327
15.3	1.00204	18.7	1.00260	22.1	1.00329
15.4	1.00206	18.8	1.00262	22.2	1.00331
15.5	1.00207	18.9	1.00264	22.3	1.00333
15.6	1.00209	19.0	1.00266	22.4	1.00335
15.7	1.00210	19.1	1.00267	22.5	1.00337
15.8	1.00212	19.2	1.00269	22.6	1.00339
15.9	1.00213	19.3	1.00271	22.7	1.00341
16.0	1.00215	19.4	1.00273	22.8	1.00343
16.1	1.00216	19.5	1.00275	22.9	1.00346
16.2	1.00218	19.6	1.00277	23.0	1.00349
16.3	1.00219	19.7	1.00279	23.1	1.00351
16.4	1.00221	19.8	1.00281	23.2	1.00353
16.5	1.00222	19.9	1.00283	23.3	1.00355
16.6	1.00224	20.0	1.00285	23.4	1.00357
16.7	1.00225	20.1	1.00286	23.5	1.00359
16.8	1.00227	20.2	1.00288	23.6	1.00362
16.9	1.00229	20.3	1.00290	23.7	1.00364
17.0	1.00230	20.4	1.00292	23.8	1.00366
17.1	1.00232	20.5	1.00294	23.9	1.00369
17.2	1.00234	20.6	1.00296	24.0	1.00372
17.3	1.00235	20.7	1.00298	24.1	1.00374
17.4	1.00237	20.8	1.00300	24.2	1.00376
17.5	1.00239	20.9	1.00303	24.3	1.00378
17.6	1.00240	21.0	1.00305	24.4	1.00381
17.7	1.00242	21.1	1.00307	24.5	1.00383
17.8	1.00244	21.2	1.00309	24.6	1.00386
17.9	1.00246	21.3	1.00311	24.7	1.00388
18.0	1.00247	21.4	1.00313	24.8	1.00391
18.1	1.00249	21.5	1.00315	24.9	1.00394
18.2	1.00251	21.6	1.00317	25.0	1.00397
18.3	1.00253	21.7	1.00319	/	/

附录 C

水分接收器校准记录格式(仅供参考)

记录(证书)编号:

第1页 共1页

委托单位			·	地址		
被校准	名称			型号规格		
计量器具	制造厂			出厂编号		
标准器名称	编号	温島茄国		角定度/准确度等 /最大允许误差	溯源单位/证 书号	有效期至
依据				校准地点		
结果不确定度				环境条件	温 度: 相对湿度:	°C %
校准日期				建议下次校准		
校准员				核验员		

	校准用介质					
编号	测量点/mL	水温/℃	质量值/g	K(t)值	$V_{ m 20}/{ m mL}$	\overline{V}_{20} /mL

附录 D

水分接收器校准证书内页格式(仅供参考)

校准用介质:

编号	测量点/mL	\overline{V}_{20} /mL	扩展不确定度 <i>U/m</i> L (<i>k</i> =2)

附录 E

水分接收器容量值测量结果的不确定度评定示例

E.1 校准方法

依据正文 6.3,针对 1 个编号为 01,标称容量为 10mL 的水分接收器,进行 10 次测量。

E.2 测量模型

$$V_{20} = \frac{m(\rho_{\rm B} - \rho_{\rm A})}{\rho_{\rm B}(\rho_{\rm W} - \rho_{\rm A})} \Big[1 + \beta (20 - t_{\rm W}) \Big]$$
 (E.1)

式中:

 V_{20} —20°C温度下的容量值,mL;

m——被校水分接收器所容纳水的表观质量, g;

 $ho_{
m B}$ ——砝码密度,取值 $8.00
m g/cm^3$;

ρ_A——空气密度,取 0.0012g/cm³;

ρw——水密度, g/cm³;

β——被校水分接收器的体胀系数,取 1×10⁻⁵/°C;

t——测定介质水的温度, $^{\circ}$ C。

E.3 灵敏系数

根据测量模型得到灵敏系数为

$$c_{m} = \frac{\partial V_{20}}{\partial m} = \frac{\left(\rho_{B} - \rho_{A}\right)}{\rho_{B}\left(\rho_{W} - \rho_{A}\right)} \left[1 + \beta\left(20 - t\right)\right]$$
 (E.2)

$$c_{t} = \frac{\partial V_{20}}{\partial t} = -\frac{m(\rho_{B} - \rho_{A})}{\rho_{B}(\rho_{W} - \rho_{A})}\beta$$
 (E.3)

$$c_{\beta} = \frac{\partial V_{20}}{\partial \beta} = \frac{m(\rho_{\rm B} - \rho_{\rm A})}{\rho_{\rm B}(\rho_{\rm W} - \rho_{\rm A})} (20 - t)$$
 (E.4)

$$c_{\rho_B} = \frac{\partial V_{20}}{\partial \rho_B} = \frac{m\rho_A}{\rho_B^2 (\rho_W - \rho_A)} \Big[1 + \beta (20 - t) \Big]$$
 (E.5)

$$c_{\rho_W} = \frac{\partial V_{20}}{\partial \rho_W} = -\frac{m(\rho_B - \rho_A)}{\rho_B (\rho_W - \rho_A)^2} \left[1 + \beta (20 - t)\right]$$
 (E.6)

$$c_{\rho_{A}} = \frac{\partial V_{20}}{\partial \rho_{A}} = \frac{m \left[1 - \beta \left(t - 20\right)\right]}{\rho_{B}} \left[-\frac{1}{\left(\rho_{W} - \rho_{A}\right)} + \frac{\left(\rho_{B} - \rho_{A}\right)}{\left(\rho_{W} - \rho_{A}\right)^{2}} \right]$$
(E.7)

E.4 标准不确定度评定

E.4.1 标准不确定度 A 类评定

按照实施方案的要求,对 10mL 水分接收器进行 3 次独立的重复测量,数据见表 E.1。

序号	校准点	质量	砝码 密度	空气密度	环境 温度	水温	水密度	热膨胀 系数	V_{20}
	(mL)	(g)	(g/cm ³)	(g/cm ³)	(°C)	(°C)	(g/cm ³)	°C-1	(mL)
1	10	9.9662	8	0.00119	21.5	20.5	0.9980961	10×10 ⁻⁶	9.9976
2	10	9.9660	8	0.00119	21.5	20.5	0.9980961	10×10 ⁻⁶	9.9974
3	10	9.9700	8	0.00119	21.5	20.5	0.9980961	10×10 ⁻⁶	10.0014

表 E. 1 水分接收器校准数据

 V_{20} 平均值: $\overline{V} = 9.9988$ mL

单次测量的实验标准偏差,采用极差法: $s(V) = \frac{V_{\text{max}} - V_{\text{min}}}{C_3} = 0.0024 \text{mL}$

测量重复性引入的标准不确定度为: $u_{\rm A}(\overline{V}) = \frac{s(V)}{\sqrt{3}} = 0.0014 {\rm mL}$,灵敏系数为 1。

E.4.2 标准不确定度 B 类评定

E.4.2.1 水质量称量引入的不确定度 u(m)

水分接收器排出的水质量通过电子天平称量获得,因此水质量测量不确定度取决于天平的测量误差。天平测量不确定度影响因素主要有天平重复性、偏载误差和示值误差,分别由 u_1 、 u_2 和 u_3 表示。根据电子天平的检定证书给出的最大允许误差,天平重复性为 ± 0.15 mg,偏载误差为 ± 0.10 mg,示值误差为 ± 0.05 mg,服从均匀分布分别除以 $\sqrt{3}$,则:

$$u(m) = \sqrt{u_1^2 + u_2^2 + u_3^2} = 0.108mg$$

并计算 c_m =1.00295 μ L/mg。

E.4.2.2 砝码密度引入的不确定度分量 $u(\rho_{\rm B})$

根据 JJG 99—2022《砝码》得到砝码密度的不确定度为 $0.14g/cm^3$,k=2,所以,

$$u(\rho_{\rm B}) = \frac{0.14}{2} = 0.07 \,\text{g/cm}^3$$

计算 $c_{\rho_{\rm B}}$ =0.004659mL·cm³/g。

E.4.2.3 空气密度引入的不确定度 $u(\rho_{A})$

按照 CIPM-2007 推荐使用的空气密度的计算公式,分析计算可得到空气密度的标准不确定度为:

$$u(\rho_{\rm A}) = 6.7 \times 10^{-7} \,\mathrm{g/cm^3}$$

计算 $c_{o} = 220.01 \text{mL} \cdot \text{cm}^3/\text{g}$

E.4.2.4 水密度引入的不确定度 $u(\rho_{\rm w})$

测量介质为蒸馏水,所以水密度采用了国际实用温标水密度值,其允差为±1×10⁻⁴g/cm³,服从均匀分布,其测量标准不确定度为:

$$u(\rho_{\rm W}) = 1 \times 10^{-4} / \sqrt{3} \,{\rm g/cm^3} = 5.77 \times 10^{-5} \,{\rm g/cm^3}$$

计算 $c_{\rho_{\text{W}}}$ =-251.334mL·cm³/g。

E.4.2.5 水分接收器体胀系数引入的不确定度 $u(\beta)$

水分接收器的体胀系数为: 1×10^{-5} /°C,根据经验值,取水分接收器体胀系数引入的不确定度: $u(\beta)=1.0\times10^{-6}$ °C-1

计算 c_{β} =-125.279°C·mL。

E.4.2.6 水温度测量引入的不确定度u(t)的评估

水温度测量按照检定证书给出误差为±0.10℃,服从均匀分布,其测量标准不确定度为:

$$u(t) = 0.10 / \sqrt{3}^{\circ}\text{C} = 0.057^{\circ}\text{C}$$

计算 c_t =-0.002506mL/°C。

E.4.2.7 不确定度分量汇总情况

表 E. 2 不确定度分量汇总

不确定度来源	不确定度分量	不确定度值	灵敏系数 c _i
测量重复性引入	$u_{ m A}ig(\overline{V}ig)$	0.0014mL	1
水质量称量引入	u(m)	0.000108g	1.00295uL/mg
砝码密度引入	$u(ho_{ ext{ iny B}})$	$0.07 \mathrm{g/cm^3}$	0.004659mL·cm ³ /g
空气密度引入	$u(ho_{\scriptscriptstyle m A})$	$6.7 \times 10^{-7} \text{g/cm}^3$	220.01mL·cm ³ /g
水密度引入	$u(ho_{ ext{ iny W}})$	5.77×10 ⁻⁵ g/cm ³	-251.334mL·cm³/g
水分接收器容量管膨胀系 数引入	u(eta)	1.0×10 ⁻⁶ °C ⁻¹	-125.279°C·mL
水温度测量引入	u(t)	0.057°C	-0.002506mL/°C

E.4.3 合成标准不确定度

$$u_{c} = \sqrt{u_{A}(\overline{V})^{2} + u(m)^{2} c_{M}^{2} + u(\rho_{B})^{2} c_{\rho B}^{2} + u(\rho_{A})^{2} c_{\rho A}^{2} + u(\rho_{W})^{2} c_{\rho W}^{2} + u(\beta)^{2} c_{\beta}^{2} + u(t)^{2} c_{t}^{2}}$$

$$= 0.015 \text{mL}$$

E.5 扩展不确定度

取包含因子 k=2 则,扩展不确定度: $U=2\times u_{\rm c}=0.03{\rm mL}$ (k=2)。